
All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

WHAT FITS WHERE? OVERVIEW #1

GOF CLASSIFICATION OF DESIGN PATTERNS
BEHAVIORAL PATTERNS

BRIEF DEFINITION
The focus of Behavioral Patterns focus on three things:
communication, separation of responsibilities and cooperation
between objects.

OVERVIEW OF THE BEHAVIORAL PATTERNS
Chain of responsibility – Passes request through until object is found
to execute it.
Command – Encapsulates actions in separate Command objects, each
with a specific task and responsibility. Can implement “roll back” or
“undo”
Delegate* – Delegates actions to other objects. Can change the objects
to delegate to, based on parameters given to the Delegate
Interpreter – Interprets a language and translates that to a relational
object structure.
Iterator – Describes ways to iterate through lists.
Manager* – Uses elements from Façade and Mediator Patterns to
centralize communication and decision making in the project.

Mediator – Centralizes and mediates communication between objects
in your project.
Memento – Describes ways to make snapshots of objects, to be stored
somewhere else or to roll back actions and commands.
Observer – Decouples hard dependencies between objects, allows you
to observe objects that perform actions and to receive callbacks.
Operator* – Acts as a gatekeeper to subsystems, can make decisions
like the Manager and combines elements from Façade and Mediator
pattern
State – Is used in situations where a method call might lead to a change
in the state of an object, leading to a different way to execute a process.
Strategy – Describes a pattern that allows you to change parts of the
implementation of processes used to execute actions in your class.
Template Method – Is a class-based pattern describing how you can
use place-holder methods as a template to implement the concrete
actions in class-specific code.
Visitor – Is a pattern in which you send an object (the Visitor) into a
object structure, to perform actions or collect data.

CREATIONAL PATTERNS

BRIEF DEFINITION
Creational Patterns are used to create objects.

OVERVIEW OF THE CREATIONAL PATTERNS
Builder – Creates (complex) object structures using two parts: the
Director and the Concrete builder. The Director describes the prcess.
The Concrete Builder chooses the materials and creates the objects
Prototype -
Simple Factory* - Is the most used variant on the Factory Pattern.
Creates objects on demand, abstracting the creation process.
Singleton – Takes control of and care of the creation of the Singleton
object. Creates and provides one single object for all:to retrieve and use.
Multiton* – Takes care and control of creation of the Multiton object.
Provides one single object per key provided by the requester.

Factory Object Map* - Creates and maps objects in a multi-tier map,
using the object ID and class reference as two main keys for storage and
retrieval. Centralizes access to objects that represent an entity.
Factory Object Pool* - Provides recyclable objects from an object
pool and creates these objects when the pool is empty. Centralizes re-
use of objects.
Extended Identity Map* - Creates and stores objects using their
identity. Centralizes creation and access to objects that represent an
entity.
Abstract Factory – Describes the abstract classes and cooperation to
create interchangeable factories.
Factory Method – Describes the structure to create classes with
factory methods, where these (your) classes can be interchangeable. Is
also the basis for Abstract Factory.

STRUCTURAL PATTERNS

BRIEF DEFINITION
Structural Patterns focus on three things: how to create (complex)
structures, how to create and change the behavior and structure of
objects during runtime and how to make classes work together.

OVERVIEW OF STRUCTURAL PATTERNS
Adapter –Adapts objects and classes to the needs of your code,
allowing your code to work with that object and class
Bridge –Is a polymorphic Class. Bridge allows you to change behavior
of the Context object on runtime. It uses delegation of all actions to one
of many possible objects implemented by Bridge to do the real work.
Composite – Describes the class-structure to create nested object
structures.

REMARKS

Patterns with a *
Patterns with a * are not part of the 23 GoF Design Patterns.

Decorator – Uses a base interface to create several variations on a
specific object and Class which can be nested into each other to add
specific qualities.
Flyweight – Stores and shares objects for re-use in your application.
Used mostly for objects which are very heavy in memory use.
Façade – Simplifies access and use to a subsystem. Combines actions on
that system in single methods and these behind the scenes.
Proxy – Acts as a man in the middle between your code and the
concrete object. Can represent remote objects and objects not there yet.
Can manage references and access to concrete objects and protect them
by adding extra (security) layers.

LINKS

GoF Design Patterns overview:

Behavioral Patterns
Creational patterns
Structural Patterns

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-CLASS-BEH.html#PAT-CLASS-BEH
http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-CLASS-CREA.html#PAT-CLASS-CREA
http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-CLASS-STRU.html#PAT-CLASS-STRU

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

WHAT FITS WHERE? OVERVIEW #2

DESIGN PATTERNS BY TYPE AND USE

WRAPPING, INTERFACING, ABSTRACTION

TYPE 1: WRAPPERS OF OBJECTS AND CLASSES
Adapter – Wraps objects (Object Adapter) and clases (Class Adapter)
Decorator – Wraps objects and other decorators, adds functionality
Delegate – Wraps the execution process, can delegate internally to any
object that is accepted and capable to do the job.
State – Wraps the processes in separate Concrete States
Bridge – Wraps the process of selection, delegation and execution
against concrete implementation of the tasks the Context object is
supposed to do.
Proxy – Wraps and abstracts the concrete object it represents.

TYPE 2: WRAPPERS OF SUBSYSTEMS
Façade, Mediator, Manager, Operator – Offer a simplified interface
to the complexity of the system it “wraps” Centralizes communication
in some way. “Wrap” the subsystem by taking the role of point of
access.

CREATING OBJECTS AND STRUCTURES

TYPE 1: CREATING AND INSTANTIATING OBJECTS
Simple Factory, Factory Method, Abstract Factory – All deal with
the (abstraction of) creation of objects. You call the construction
method and it will return the requested object.
Factory Object Map, Factory Object Pool, Extended Identity Map
– Each centralize the creation and management of objects. These
patterns first check if the requested object is already there.

TYPE 2: CREATING AND READING COMPLEX OBJECTS
Parser, Builder, Iterator – Each are capable of building complex
objects using different ways to do so.
Composite – Is the basis for any complex object, defining a structure in
which objects can have one or more children.
Iterator, Visitor, Reflection – Are all methods to read and use the
complex object structure as defined in (usually) the Composite object.

CREATION OF DYNAMIC CLASSES

TYPE 1: DYNAMIC CLASSES AND OBJECTS
Bridge – Implements one or more delegates to delegate the execution
of actions to. Is usually extended by other classes as base-class. By
changing the delegate, the behavior of the Bridge changes as if it is a
different class. Referred to here as “polymorphic class”

TYPE 2: DYNAMIC EXECUTION OF ACTIONS
Delegate, State, Strategy – How actions are implemented and
executed is defined by the delegates used by and in these patterns.
These actions can include behaviors and ways to handle a process.

TYPE 3: DYNAMIC EXTENTION
Decorator – The decorator allows you to add functionalities to your
class and object by decorating it with these extra functionalities.

DELEGATION OF ACTIONS

TYPE 1: DELEGATION OF ALL ACTIONS
Delegate, Adapter, Command, State, Bridge – Delegate all actions to
a delegate object. This can be the Adaptee, an injected object
(Command) or a context-specific implementation of actions (Delegate,
State, Bridge).
Proxy – Acts as a man in the middle all actions to object it represents.

TYPE 2: DELEGATION OF SOME ACTIONS
Strategy – The Strategy pattern assumes your object will do most of
the tasks and only delegate those actions you need a variable
implementation for.

TYPE 3: DELEGATION TO SUBSYSTEMS
Façade, Mediator, Manager, Operator – While offering a simple
interface and centralizing actions, each of these patterns delegate the
real work to one or more subsystems.

DATA AND DATA TRANSFER (1)

TYPE 1: INJECTING VALUES INTO OBJECTS
Parser, Injector, Reflection – All can be used to inject values into an
object.

TYPE 2: STORING AND RETRIEVING DATA
Identity Map, Object Map, Multiton – Can be used to store objects
and data in a central place, under specific keys for specific retrieval.

DATA AND DATA TRANSFER (2)

TYPE 3: WORKING WITH EXTERNAL DATA
Remote Proxy, Data Acces Object – Can be used to approach and
work with external data and external systems.

SHARING AND RE-USING OBJECTS

TYPE 1: SHARING AND RE-USING OBJECTS
Singleton, Multiton, Flyweight – All take care of creation and sharing
of a limited set of objects in your project. Singleton only creates one.
Multiton and Flyweight as many as you need, stored under keys
Ideitnty Map, Object Map – All store objects under an identity key,
usually referring to that of the entity the object represents.
Object Pool – Focuses on re-use more than sharing. While objects in
the Pool are “shared”, this is not its purpose.

EVENTS, INSTRUCTION, COMMUNICATION

TYPE 1: DIRECT COMMUNICATION
Mediator, Manager, Operator – Each strive to centralize
communication within a specific context. This can be by calling (static)
methods or via events in the Observer pattern.

TYPE 2: DECOUPLING DEPENDENCIES
Observer, Command – Decouple dependencies between the user and
the classes executing the required actions. Both patterns remove the
need for the remote party to know who or what they are addressing.

Link: Patterns ordered by type and use

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-TYP.html#PAT-TYP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #1

ADAPTER (CLASS/OBJECT)

+ someMethodA():
 do something
 return result

«class»
Adaptee

Client

+ desiredMethodA():
 do something
 execute someMethodA()
 do something else

Adapter A

1: «addresses object of type»

3: «delegates actions to»

2: «adapts»

Wraps and adapts the interface of existing Objects and Classes to your needs

4: «leading to»

Visual summary of the Adapter Pattern

INTENT

Convert the interface of a class into another
interface clients expect. Adapter lets classes work
together that couldn't otherwise because of
incompatible interfaces.

DEPENDENCIES

Client:
1: Addresses object of type Adapter A
Adapter A:
2 Adapts Adaptee
Desired Method:
3: Delegates actions to Adaptee

RESULT

Wraps and adapts the interface of existing objects
and classes to your needs

BASICS

WHEN/WHAT?
When you need to adapt Incompatible Interfaces
You use the Adapter when the Class you want to use has an Interface
that is not compatible with the needs of your code.

Two variations
The Adapter Pattern knows two variations:

1: The Object Adapter
The Object Adapter adapts an object by wrapping it and delegating the
required actions to the Adaptee.

2: The Class Adapter
The Class Adapter extends the Class that needs to be adapted, applies
the required Interface your code desires and – like the Object Adapter –
delegates the actions to the Adaptee, which is used as a Base Class.

OTHER INFO
Using delegation
The Adapter uses delegation of actions to do its work.

CLASS DIAGRAM

Object Adapter A

+ desiredMethodA()

+ someMethodA()

«class»
Adaptee

2.a: «implements»

Client

+ desiredMethodA()

«interface»
Target A

«adaptee.someMethodA()»

1: «addresses object
of type»

- adaptee

2.b: «contains»

Object Adapter: adapting the object by wrapping it

Class Adapter A

+ desiredMethodA()

+ someMethodA()

«class»
Adaptee

2.a: «implements»

Client

+ desiredMethodA()

«interface»
Target A

2.b: «extends»

«someMethodA()»

1: «addresses object
of type»

Class Adapter: adapting the class by extending it

Link: Adapter

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-ADP.html#PAT-ADP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #2

BRIDGE

Base Abstraction

+ operationA()
+ operationB(parameter)
+ setContext(contextID)

+ operationA()
+ operationB(parameter)

Concrete Implementor A

- implementor

RefinedAbstraction

+ operationC()

«Bridge»

4: «can be extended to»

3: «delegates actions
to selected»

1: «can select any of»

A polymorphic class that can change its behavior and concrete implementation on runtime

5: «leading to»

2: «contains selected»

Concrete Implementor B

«implementation»

Visual summary of the Bridge Pattern

INTENT

Decouple an abstraction from its implementation so
that the two can vary independently.

DEPENDENCIES

Base Abstraction:
1: Can select any of the Concrete Implementors
exposing the same interface
Implementor variable:
2: Contains selected Concrete Inplementor
Methods:
3: Delegate actions to selected Implementor
Base Abstraction
4: Can be extended to Refined Abstraction

RESULT

A polymorphic class that can change its behavior and
concrete implementation on runtime

BASICS

WHEN/WHAT?
When you need a Class that can change its
behavior/implementation
You use the Bridge when you need a Class that can change its behavior
and concrete implementation when needed.
A Dynamic Base Class
The Bridge is intended to act as a Dynamic Base Class, to be extended
by your code. While you only extend one Base Class, that Base Class
can internally instantiate any concrete implementation of a specific
functionality.
A Pretender
The Bridge can be seen as a Pretender of the Classes it can Instantiate.
While Your code thinks it is working with one single object or Class
(the Bridge), it is actually interacting with the Instantiated object
wrapped by the Bridge.

OTHER INFO
Using delegation
The Bridge uses delegation of actions to do its work.

Using a Factory or Object Map to get the delegate
One way to look at the Bridge is as a wrapper around the Factory or
Object Map. Using either the Factory or the Object Map you can return
any object in a selected group and use it as the delegate for the
delegation of actions.

SIMILAR PATTERNS

CLASS DIAGRAM

Abstraction

+ operationA()
+ operationB(parameter)

Concrete Implementor A

+ operationA()
+ operationB(parameter)

«interface»
Implementor

1.a: «contains
object of type»

- implementor

Concrete Implementor B

2.a: «implements»

RefinedAbstraction

2.a: «extends»

+ operationA()
+ operationB(parameter)

+ operationA()
+ operationB(parameter)

+ operationC()

«implementor
.operationA()»

«Bridge»

Link: Bridge

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-BRI.html#PAT-BRI

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #3

BUILDER

Director

+ constructA():
 cb.buildPart ..
 cb.buildPart ..
 cb.buildPart ..
 result=cb.getResult()
 return result

Concrete Builder

Overrides / implements:
+ buildPartA()
+ buildPartB()
+ buildPartC()
+ getResult()

Client

Composite Object

2: «uses»

1: «uses»

4: « construct
and returns»

6: «returns
composite
object to»

5: «is returned to»

3: «addresses»

Visual summary of the Builder Pattern

INTENT

Separate the construction of a complex object from
its representation so that the same construction
process can create different representations.

DEPENDENCIES

Client:
1: Uses the Director
Methods in the Director:
2: Uses the Concrete Builder
Methods:
3: Addresses build-instructions in the Concrete
Builder
Build-instructions:
4: Construct and return Composite Object
Composite Object:
5: Is returned to the Director
Director:
6: Returns object to Client

RESULT

A dynamic way to build complex objects using a
basic set of building instructions

BASICS

WHEN/WHAT?
To build dynamic structures
The Builder pattern is used to allow you to build several versions on
the same product, using object composition.

Fixed set of build-instructions, variable outcome
While the Builder Pattern can have fixed building instructions inside
the Director, the Builder Classes can implement these instructions each
in a different way, leading to the same kind of constructions with
completely different implementations. See the illustration below.

OTHER INFO
Builder and Composition
In most cases, the Builder will produce a Product using the Composite
Pattern.

CLASS DIAGRAM

«base class/interface»
Base Builder A

+ buildPartA()
+ buildPartB()
+ buildPartC()
+ getResult()

Concrete Builder A

Director A

+ setBuilder(builder)
+ construct()

- builder

Override / implement:
+ buildPartA()
[..]

3.b: «is of type»

Composite Object

3.b: «produces /
builds / returns»

Concrete Builder B

Override / implement:
+ buildPartA()
[..]

2: «extends / implements»«for all objects in structure
 buildPart .. ()
 buildPart .. ()
 buildPart .. ()
 return getResult()»

Link: Builder

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-BLD.html#PAT-BLD

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #4

CHAIN OF REPSONSIBILITY *

Visual summary of the Chain of Responisbility Pattern

Link: Chain of Responsibility

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-CRS.html#PAT-CRS

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #5

COMMAND

Target Object A

Command

- target

Invoker

- proxy

+ doSomething()
+ doSomethingElse()

1: «receives /
retrieves»

+ execute()
+ undo()

+ methodA()
+ methodB()

2: «contains»

3: «will call»

4: «perform actions on»Method execute():
 //Perform internal actions
 // Call:
 target.methodA()

Visual summary of the Command Pattern

INTENT

Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or
log requests, and support undoable operations.

DEPENDENCIES

Invoker:
1: Receives/ retrieves Command
Command:
2: Contains Target Object A
Client methods:
3: Will call “execute” method on Command
Execute method:
4: Will perform actions on Target Object A, can perform
internal actions as well.

RESULT

A way to decouple, abstract and package any action from
the objects on which these actions are performed

BASICS

WHEN/WHAT?
Decouple, abstract and package any action
The Command offers a way to decouple, abstract and package any
action from the objects on which these actions are performed.

Sending command objects into your project, have them executed
elsewhere
The Command Pattern allows you to send objects into your project
that contain specific callbacks to specific parts of your code. Combined
with an Object Map you can even create a system that has no
dependencies between the caller and callee of a specific Command.

Inversion of control
Commands allow for Inversion of Control by separating the definition
of the Command from the actual execution. Each and any Command
can be executed to perform a specific action and by sending a different
Command for the same action, you can change the location where and
way in which that command is executed.

OTHER INFO
Who creates and passes the Command to Some System?
The Command can be passed and created by the “Client”. (See class
diagram below). This can be any other object in your project.

Using an unified Command Interface
Each Command implements exactly the same Interface as any other
Command in your collection. While each Command can be handling
completely different actions on completely different objects, you can use
each and all Commands in exactly the same way. Depending on the type
of Command, this Interface shares the methods “execute()” and, if there
is an Undo: “undo()”

CLASS DIAGRAM

Client

Receiver

+ action()

Concrete Command

+ execute()
+ undo

2.b: «extends /
implements»

+ receiver
2.a: «has reference to /

calls methods on»

Invoker

+ doSomething()
+ undoSometing()

+ command(list)

Base Command

+ execute()
+ undo()

1.b: «creates /
injects Receiver into»

3: «has reference to /
calls methods on»

1.a: «can create /
has knowledge of»

1.c: «makes command
available for»

Link: Command

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-COM.html#PAT-COM

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #6

COMPOSITE

Non-terminal node A

Non-terminal node B

Object Structure AClient A
1: «contains»

«non-terminal nodes»

3: «can be child of»

Terminal node A

Terminal node B

«terminal nodes»

4: «can be child of»

2: «can contain»

Visual summary of the Composite Pattern

INTENT

Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

DEPENDENCIES

Client A:
1: Contains Object Structure A
Object Structure A:
2: Can contain terminal and non-temrinal nodes
Non-terminal nodes:
3: Can be children of non-terminal nodes
Terminal nodes:
4: Can be children of non-terminal nodes.

RESULT

A way to build an object tree with nodes and children,
that can be of any depth

BASICS

WHEN/WHAT?
Parent/child relationships
The Composite pattern describes objects that can have parent/child
relationships.

Terminal and non-terminal nodes
The Composite Pattern makes explicit mention of terminal and non-
terminal nodes.

Used in almost any situation where you build dynamic structures
Each and all software you use implements at least one Composite. For
instance: the web-pages you see in your web browser are rendered from
composite objects derived from the HTML your browser received.
Applications like Word, Excel and Powerpoint do similar things with
the content they load and present and store again.

OTHER INFO
Iterating the Composite object
The Composite can be iterated (run through) to perform actions or get
data using a Parser, a Visitor or an Iterator. Each of these patterns have
their advantages and drawbacks.

Using as the basis for another structure
When you parse data, one Composite object can be the basis for another,
for instance when you read a representation of a real-world object and
you want to extract only specific aspects or parts of it or save it as an
abstract definition to your hard drive.

Building a composite
The Builder, Parser and Interpreter pattersn use the Composite pattern
as the basis for the objects they use to build composite object structures.

SIMILAR PATTERNS

CLASS DIAGRAM

1.a: «is of
type»

- compositeObject
«base class / interface»

Base Node A

+ someMethod()

Leaf A Node A

2: «extends»

Client

Override / implement:
+ someMethod()
+ add(component)
+ remove (component)
+ getChild(index)

Override / implement:
+ someMethod()

- children

3: «are of type»

«can implement:
for each item in children:

item.someMethod()»

1.b: «contains either»

Link: Composite

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-CMP.html#PAT-CMP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #7

DATA ACCESS OBJECT *

T

Link: Data Access Object

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-DAC.html#PAT-DAC

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #8

DECORATOR

Decorator A

+ yourMethodA: extended
+ yourMethodB: extended

Decorator B

1: «can be wrapped
by any from»

2: «can be
wrapped by any»

+ yourMethodA(): extended
+ yourMethodB(): extended

Main Interface / Base Class

3: «share the same»

Your Class

+ yourMethodA():
 do something
+ yourMethodB()
 do something else

variables

procedures

+ yourMethodA():
+ yourMethodB()

«decorators»

Visual summary of the Decorator Pattern

INTENT

Attach additional responsibilities to an object
dynamically. Decorators provide a flexible
alternative to subclassing for extending
functionality.

DEPENDENCIES

Your Class:
1: Can be wrapped buy any
Any Decorator:
2: Can can be decorated by any other Decorator
form the same collection
Decorators and Your Class:
3: Share the same Main Interface / Base Class

RESULT

Extended functionalities on existing objects

BASICS

WHEN/WHAT?
To dynamically add and change functionalities to/on an object
The Decorator allows you to dynamically add functionalities to an
existing object. This can either be extra components and parts when
it is a visual component, or extra and different actions in methods it
exposes to the world.

Wrap-and-add
The Decorator wraps the object you Inject and then adds new
functionalities to it.

OTHER INFO
Injection instead of internal creation
The Decorator differs from patterns in the way it obtains the object it
wraps. Where the Adapter usually creates the Adaptee, the Decorator
gets that object via Injection by your code.

Decorators should not exceed the basic interface
The Decorators should not expose additional public methods as these
Decorators will be decorated themselves, making these additional “rogue”
methods unreachable from other objects.

SIMILAR PATTERNS

CLASS DIAGRAM

«interface / base class»
Base Component A

+ someMethod()
+ anotherMethod()

Concrete Component A

Override / implement:
+ someMethod()
+ anotherMethod()

Base Decorator A

+ setComponent(component)
Override / implement:
+ someMethod()
+ anotherMethod()

1: «implements / extends»

«component.someMethod()»
«component.anotherMethod()»

Concrete Decorator B Concrete Decorator C

Override:
+ someMethod()
+ anotherMethod()

- component

2: «is of type»

- yourAddedMethodB()
Override:
+ anotherMethod()

Concrete Decorator A

- yourAddedMethodA()

3: «extends»

Link: Decorator

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-DEC.html#PAT-DEC

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #9

DELEGATE

+ someMethodA():
 do something
 return result

Delegate A

Client

+ delegateMethodA():
 do something
 delegate.someMethodA()
 do something else

Delegator A

1: «addresses»

3: «delegates actions to»

2: «instantiates / uses either»

+ someMethodA():
 do something else
 return result

Delegate B

Visual summary of the Delegate Pattern

INTENT

To delegate and abstract the actual execution of an
Action to another object. To offer one single Interface
for the execution of these Actions, independent of the
concrete implementation of these Actions.

DEPENDENCIES

Client:
1: Addresses Delegator A
Delegator A:
2: Instantiates uses either Delegate A or B
Delegate Method:
3: Delegates actions to either Delegate A or B

RESULT

Plug & play code: a cleaner way to define who executes
what, how, when

BASICS

WHEN/WHAT?
Delegating actions to other objects
The main goal of the Delegate is to delegate the execution of Actions to
other objects it can either retrieve or instantiate based on specific
parameters.

Plug & play code:
a cleaner way to define who executes what, how and when
If and when you want to have a flexible way to execute specific processes,
you can follow several different routes, including conditional execution,
where a Switch or and if/then/else statement separates the different
approaches.
In the Delegate Pattern, you extract these approaches and place them in a
separate Class, allowing you to create “plugins” that execute specific actions
in a specific way. To change the way an action is executed, you simply
replace “Delegate Object A.a” for “Delegate Object A.b”.

OTHER INFO
Can offer multiple actions to be executed via Delegation
The Delegate can expose one or more methods to be executed by
Delegation via another object.

Allows your system to expand possibilities without the need
to rewrite your base code
In most cases, where the selection and use of solutions are
hardcoded in the application, adding new functionalities lead to a
partial re-write and update of that code. Instead, when you use the
Delegate Pattern wisely, you can add any new Delegate to the list,
without having to change any line of code.

CLASS DIAGRAM

Delegator A

+ delegateMethodA()

+ someMethodA()

Concrete Delegate A.a

2.a: «implements»

Client

+ delegateMethodA()

«interface»
Base Delegator A

«delegate.someMethodA()»

1: «addresses object
of type»

- delegate
2.b: «contains
object of type»

+ someMethodA()

«interface»
Base Delegate A

+ someMethodA()

Concrete Delegate A.b

3: «implements»

Link: Delegate

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-DEL.html#PAT-DEL

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #10

FAÇADE

1: «execute actions on»

4: «does stuff inside»

2: «refer to objects within»
Façade

+ operationA()
+ operationB(parameter)
+ operationC()

- objectReferenceA
- objectReferenceB
- objectReferenceC

«subsystem»

Object from Class A

Object from Class B

Object from Class C

3: «delegate actions to»

Visual summary of the Façade Pattern

INTENT

Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

DEPENDENCIES

Operation A, B, C:
1: Executes actions on object reference A, B or C
Object references A, B, C:
2: Refer to objects within the subsystem
Operation A, B, C:
3: Delegate actions to the subsystem
Objects from Class A, B, C
4: Can do stuff inside the subsystem

RESULT

Simplification of calls to- and actions on the
subsystem

BASICS

WHEN/WHAT?
When you want to wrap a subsystem
The Façade wraps a subsystem by offering a simplified interface to the
actions in that subsystem. It deals internally with alle the actions you would
otherwise have to code each time you access those functionalties.

Simplification of the use of that subsystem
The simplification can happen, for instance, by gathering a sequence of
specific actions into one or two methods and do all the hard stuff inside these
methods.

OTHER INFO
Delegation
The Façade operates by delegating all tasks to the objects in the
subsystem it addresses.

Multiple Façades for multiple tasks
The Façade can be implemented many times to perform specific
and completely different tasks on that and other subsystems in
your project.

CLASS DIAGRAM

Façade

+ operationA()
+ operationB(parameter)
+ operationC()

- objectReferenceA
- objectReferenceB
- objectReferenceC

«result=objectReferenceA
.operationA()

resultB=objectReferenceB
.operationY(result)

»

Class A

+ operationA()
+ operationX(parameter)

Class B

+ operationB()
+ operationY(parameter)

Class C

+ operationC()

1: «contains objects from»

«subsystem»

Link: Façade

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-FCD.html#PAT-FCD

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #11

FACTORY, ABSTRACT

A: «are
implemented in»

Concrete Factory B

+ produceProductA()
+ produceProductB()

Abstract Factory Definition 3: «uses»

Concrete Product A.b

Concrete Factory A

«concrete factories»

D: «produces / return»

Concrete Product A.a

Concrete Product B.b

Concrete Product B.aC: «are extended /
implemented by»

«concrete products»

«abstract definitions»

Base Product A

Base Product B

«base product definitions»

B: «will produce
products of type»

Client A
1: «can use any factory based on»

2: «uses any of»

Visual summary of the Abstract Factory Pattern

INTENT

Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes.

DEPENDENCIES

Client A:
1: Can use any factory of abstract definitions
2: Uses any of Concrete Factory A, B ..
Abstract definitions:
A: Are implemented in Concrete Factory A, B
B: Will produce prodcuts of type Base Product A, B
Base Product A, B
C: Are extended / implemented by Concrete
Products
Concrete Factories A, B
D: Produces / return Concrete Products A.a, A.b,
B.a, B.b

RESULT

Blueprints for interchangeable factories with very
specific production lines producing specific
products

BASICS

WHEN/WHAT?
When you need to create a line of different factories
The Abstract Factory is a Pattern that describes how you can define the interfaces
for a set of factories you can interchange for any of the other, to produce very
specific products.

Blueprint for Concrete Factories
The Abstract Factory is basically a Blueprint for Concrete Factories. The Abstract
Factory Pattern uses this principle to create multiple Concrete Factories based on
the Abstract Factory and to allow you to choose any of them.

OTHER INFO
Different implementations of a Factory per context
The Abstract Factory Pattern becomes useful when your
code works within one or more specific Contexts, use the
same basic Products to perform its actions, but needs a
different Implementation for each specific Context.

Simple Factory is more to the point
If you do not need to create many different factories based
on the same template, use the Simple Factory instead.

CLASS DIAGRAM

«interface / base class»
Abstract Product A

+ someMethod()
+ anotherMethod()

Concrete Factory A.b

+ produceProductA()
+ produceProductB()

«base class»
Abstract Factory A

2.b: «extends»

3: «uses»

Override:
+ produceProductA()
+ produceProductB()

Concrete Factory A.a

Override:
+ produceProductA()
+ produceProductB()

«return new Concrete
Product»

2.a: «produces»

3: «extends / implements»

2.a: «produces»

«interface / base class»
Abstract Product B

+ someMethod()
+ anotherMethod()

Concrete Product B.b

4: «extends /
implements»

+ someMethod()
+ anotherMethod()

Client A2.b: «requests products of type»

1.a: «uses a factory of type»

Concrete Product A.a

+ someMethod()
+ anotherMethod()

Concrete Product A.b

+ someMethod()
+ anotherMethod()

Link: Factory, Abstract

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-AFC.html#PAT-AFC

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #12

FACTORY METHOD
1: «are
implemented in»

Concrete Creator B

+ produceProductA()
+ produceProductB()

Factory Method Definitions 3: «uses»

Concrete Product A.b

Concrete Creator A

«your classes»

4: «produces / return»

Concrete Product A.a

Concrete Product B.b

Concrete Product B.a3: «are extended /
implemented by»

«concrete products»

«abstract definitions»

Base Product A

Base Product B

«base product definitions»

2: «will produce
products of type»

Visual summary of the Factory Method Pattern

INTENT

Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation
to subclasses.

DEPENDENCIES

Factory Method Definitions:
1: Are implemented in your classes
Factory Method Definitions:
2: Will produce products of type Base Product
A, B ..
Base Product A, B
3: Are extended / implemented by Concrete
Products
Concrete Creators A, B
4: Produces / return Concrete Products A.a,
A.b, B.a, B.b

RESULT

Re-usable definitions for factory methods to
produce concrete products in several classes

BASICS

WHEN/WHAT?
When you need to define a blueprint for Factory Methods
The Factory Method is mostly a way to define the blueprint with which you will create
Factory Methods within your own Classes.

Starting point for Abstract Factory
As you will find when you study the Abstract Factory Pattern, the Factory Method
Pattern is almost completely implemented there as well. The main difference is that the
Factory Method assumes you will implement the Factory Methods in your own
Concrete Classes, while the Abstract Factory assumes you will extract and abstract
these Factory Methods into separate Concrete Factories.

OTHER INFO
Simple Factory is more to the point
If you do not need to create blueprints for your Factory
Methods, but simply want to implement them, use the
Simple Factory instead.

CLASS DIAGRAM

«interface / base class»
Product A

+ someMethod()
+ anotherMethod()

Concrete Creator B

+ produceProductA()
+ produceProductB()

«base class / interface»
Creator

2.b: «extends / implements»

Concrete Product A.a
3: «uses»

+ someMethod()
+ anotherMethod()

+ doSomethingElse()
Override:
+ produceProductA()
+ produceProductB()

Concrete Product A.b

+ someMethod()
+ anotherMethod()

Concrete Creator A

+ doSomething()
Override:
+ produceProductA()
+ produceProductB()

«return new Concrete
Product»

2.a: «produces»

1.b: «implements»

2.a: «produces»

Link: Factory Method

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-FAC.html#PAT-FAC

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #13

FACTORY OBJECT MAP

3: «maps / maps
constructors
for / constructs»

FactoryObjectMap

+ static getObject(key, classRef)
+ static removeObject(key, classRef)
+ static addObject(key, classRef)

4: «returns
instance of
object to»

- static _objectMap
- static _objectConstructorMap

1: «calls, using a key and class reference to
identify the specific object»

Client

2: «uses»

Class A

Class B

Class C

«objects of type»

Visual summary of the Factory Object Map Pattern

RESULT

Creation and mapping of one instance of a specific
object of any type to be retrieved and used anywhere

INTENT

Ensures that each entity is represented only
once in your application by mapping them
against their identity and class reference.
Centralized lookup and creation of objects in and
from that map.

DEPENDENCIES

Client:
1: Calls Factory Object Map, using a key and
class reference to identify the specific object
getObject in Factory Object Map:
2: Uses Object Map to try and retrieve the
requested object, creates and maps new object
when Object Map does not contain object yet.
Object Map and Constructor Map:
3: Maps objects and constructors
getObject
4: Return instance of object to Client

BASICS

WHEN/WHAT?
When you want to encapsulate & control object mapping/object creation
The Factory Object Map encapsulates the object creation process. As it maps all
objects created before, it takes full control over that object creation. Due to the
encapsulation of the creation-process, the Factory Object Map automatically takes
care of mapping of newly create objects as well.

When you want only one instance of a specific entity
The Object Map holds all objects created during runtime. If and when you request
an object with a specific ID, it will attempt to resolve it from the map first. Only
when the object with that ID is not in the map, the Factory Object Map will
produce a new one.

Inversion of control and dependency injection
The Factory Object Map allows for implementations in which the concrete object
constructors are defined separately from the implementation of the Factory Object
Map, making is possible to change the concrete classes used for instantiation of
objects without impact on the implementation of the Factory Object Map or the
code using the Factory Object Map.

OTHER INFO
Extended Identity Map
The Extended Identity Map might as well have been called
Factory Identity Map when I wrote that variation down. It
does the same as the Factory Object Map, but in a more
simple structure.

One Factory Object Map to do it all
Like the Object Map, the Factory Object Map can be used to
store any and all maps you need in your application, limiting
the amount of Factory Objects Maps in your project to one.

Using Constants to identify the classes / base interfaces
Instead you could – and probably should – create and use
constants to identify and map the classes you use to create
and retrieve the objects.

CLASS DIAGRAM

Class A

Class B

Class C

«objects of type»FactoryObjectMap

- static objectMap
- static objectConstructorMap

1: «contains»

+ static getObject(key, classRef)
+ static removeObject(key, classRef)
+ static addConstructor(constructor,
 classRef)
+ static addObject(key, classRef)

«static getObject(key:String , classReference):
 Get object of type and key from map
 When not there yet: create and store object
 return object;»

Link: Factory Object Map

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-FMP.html#PAT-FMP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #14

FACTORY, SIMPLE

+ produceProductA(subType)
+ produceProductB(subType)

Simple Factory

Concrete Product A.b

1: «will produce
producs of type»

Concrete Product A.a

Concrete Product B.b

Concrete Product B.a

2: «are implemented as»

«concrete products»

3: «produces / return»

Base Product B

Base Product A

«base product definition»

Visual summary of the Simple Factory Pattern

INTENT

Implement a method or class to create objects
based on specific parameters (the Context or
product type). The Simple Factory chooses and
instantiates the required class and returns the
result to the caller.

DEPENDENCIES

Simple Factory:
1: Will produce prod. of type Base Product A, B
Base Product A, B:
2: Are implemented on Concrete Products
Simple Factory Methods:
3: Produce / returns Concrete Products A.a, A.b,
B.a or B.b

RESULT

A very simple way to produce concrete products
based on specific parameters

BASICS

WHEN/WHAT?
To create a simple factory without the boilerplate code
You use the Simple Factory to create a factory without the
boilerplate-code of the Abstract Factory and Factory Method.

Instantiates objects based on a context
The Factory intantiates (produces) objects based on a specific
context or type. For instance, cars of type “A”, “B” and “C” which all
share the same interface, but each have a different implementation.

OTHER INFO
Can be implemented in separate Class or in your code
The Simple Factory can be implemented in your code or in a
separate Factory Class.

Returns products
Like its bigger brothers the Simple Factory produces and returns products.

Can have multiple factory methods
The Simple Factory allows you to inplement multiple factory methods.

Each factory method has an object subtype
Each method in the Simple Facotry produces one or more products of a
specific subtype. Each of these products share the same Interface but comes
from a differen Class and has a different implementation.

Useful for Builder, Parser and Interpreter
The Simple Factory is a very useful Pattern for the Builder, Parser and
Interpreter as it can produce the objects these Patterns need to build a
Composite structure.

CLASS DIAGRAM

3: «uses»
Simple Factory A

+ produceProductA(productType)
+ produceProductB(productType)

2.a: «produces»

«case productTypeA:
return new

Concrete Product A» 1.b: «implements»

Concrete Product A.a

+ someMethod()
+ anotherMethod()

Concrete Product A.b

+ someMethod()
+ anotherMethod()

«interface / base class»
Product A

+ someMethod()
+ anotherMethod()

Link: Factory, Simple

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-SFC.html#PAT-SFC

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #15

FLYWEIGHT *

Link: Flyweight

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-FLYWT.html#PAT-FLYWT

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #16

IDENTITY MAP

3: «contains»
Identity Map A

+ static getObject(objectID)
+ static addObject(objectID, object)

4: «returns
instance of
object/null

value to» - static _objectIdentityMap

1.a: «will try to get object from /
will insert new object into»

2: «uses»

Class A

«objects of type»

1.c: «will create
object from if no
object in map»

«data source
/ data objects»

Type A
1.b: «will request if
object not in map»

Client

Visual summary of the Identity Map Pattern

INTENT

Ensures that each object gets loaded only once by
keeping every loaded object in a map. Looks up objects
using the map when referring to them.

DEPENDENCIES

Client:
1.a: Will try and get object form Identity Map A / will
insert ne object into Identity Map A
1.b: Will request object from data source / data objects
when not in map
1.c: Will create object from Class A if object not in map
getObject in Identity Map A:
2: Uses objectIdentityMap to retrieve object
Object Identity Map:
3: Contains objects of type Class A
Identity Map A:
4: Returns instance of object or null value to client

RESULT

A container for (data) objects which can be retrieved
once created,
so that each (data)item has one single object to contain
and represent it

BASICS

WHEN/WHAT?
Storing objects into a map
The Identity Map Pattern stores objects into a map, using an
identity to retrieve them again

Loading objects only once
The idea of the Identity map is to load objects only once. In the case
of a database, instead of requesting the same data-objects over and
over again from the external source, you only request the data
objects you do not have yet. This reduces the load on your backend-
system.

Centralizing data management
The Identity Map centralizes data management within your project. There
is only one class (per type of object) to address for the objects (of that type)
that you might want to use in your project. When using the Identity Map,
you are sure that the object you request is the only one representing that
specific entity with that specific ID.

OTHER INFO
Database only?
While the Identity Map is associated to be used in conjunction with a
database (or external data source), it is not the only use-case where you
might like and want to store objects under specific identities.

CLASS DIAGRAM

Identity Map A

- static objectIdentityMap

1: «contains
objects of type»

+ static getObject(objectID)
+ static removeObject(objectID)
+ static addObject(objectID , object)

«static getObject(key:String , classReference):
 Get object of type and key from map
 When not there yet: return null;»

Class A

Link: Identity Map

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-IDMP.html#PAT-IDMP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #17

INJECTOR *

Link: Injector

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-INJ.html#PAT-INJ

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #18

INTERPRETER

6: «interpret»

Non-terminal Expression A

Non-terminal Expression B

Object Structure AClient A
2: «passes
context into»

«non-terminal expressions»

5: «can be child of»

Terminal Expression A

Terminal Expression B

«terminal expressions»

4: «can be child of»

3: «can contain»

Semantic Context

1: «has or receives a»

Visual summary of the Interpreter Pattern

INTENT

Given a language, define a represention for its grammar along
with an interpreter that uses the representation to interpret
sentences in the language.

DEPENDENCIES

Client A:
1: Has or receives a Semantic context
2: Passes context into Object Structure A
Object Structure A:
3: Can contain non-terminal experssions and terminal
expressions.
Terminal expressions:
4: Can be child of non-terminal experessions
Non-terminal expressions:
5: Can be child of other non-terminal expressions
6: Can interpret (like the terminal ones) the Semantic Context

RESULT

An object structure interpreting and representing the
semantic relationships as present within the Semantic Context
Object

BASICS

WHEN/WHAT?
To interpret a semantic structure
The Interpreter takes a semantic structure and translates it into an
object model, representing that structure. The semantic structure
can be natural language, but also program-code and instructions
you can give to machines.

Deconstructing and interpreting semantic structure
Semantic structures are comprised of words or items of meaning
placed within a specific context and order. The context, order and
meaning of each individual item in the total structure combined
defines the meaning and intend of a sentence, line, paragraph,
method and set of instructions.

OTHER INFO
Composite pattern
The Interpreter creates a structure using objects with a very similar setup
as the Composite pattern.

Visitor
The Visitor pattern can be used to run through the composite object that is
the result of the interpretation, to read the structure and distill meaning
from it.

Compilers, bots, search engines and word processors
The Interpreter pattern can be used to create compilers; to create bots that
reply to queries from people; in search engines to break down your search
request and interpret the content from the pages the search bots spider; in
word processors to check if your sentences are setup properly.

CLASS DIAGRAM

«base / abstract class»
Abstract Expression A

+ interpret(context)

Terminal Expression A Nonterminal Expression A

2: «extends»

Client

Context

Override:
+ interpret(context)

Override:
+ interpret(context)

- parentExpression

1.a: «uses /
injects Context
into object of
type»

«can create child elements
based on Context»

«is the terminal node on a
branch in the interpreted
Context»

- childExpressions

3: «are of type»

1.a: «has a»

Link: Interpreter

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-INPR.html#PAT-INPR

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #19

MANAGER

3: «has references to»
Manager A

+ methodA():
 do something
+ static methodB()
 do something else

«handlers
in subsystem»

Concrete Handler A

Concrete Handler B

2: «have references to»

4: «communicate to»

5: «delegates actions to specific»

Client A, B, C

1: «uses»

Visual summary of the Manager Pattern

INTENT

Define an object that encapsulates and centralizes
Business Logic for a specific set of actions and acts as a
manager for the processes that happen in the subsystem.
Make these actions easily available to any object or Class
that needs it.

DEPENDENCIES

Client:
1: Uses Manager A
Manager A:
3: Has references to handlers in subsystem
5: Delegates specific actions to Concrete Handler A, B
Handlers in subsystem
2: Have references to Manager A
4: Communicate to Manager A

RESULT

Centralization of communication between objects and
centralized management of processes in your subsystem

BASICS

WHEN/WHAT?
Centralizing actions and Business Logic
The Manager Pattern centralizes actions on your system and the
business logic that otherwise would be scattered over your
sybsystem. It uses and addresses the subsystem in a similar way as
the Façade. It can be accessed directly and mediate further actions
like the Mediator.

Solve issues with Observer Pattern
Sometimes the use of the Observer Pattern can lead to a loss of
control: who dispatched what and why? Managers help centralize
the communication from different systems and create several hubs
with specific scopes of events and dispatches.

OTHER INFO
Façade and Mediator patterns combined
The manager can be seen as a merge of the Mediator and Façade pattern,
combining the aspects of both Patterns to create an object that allows you
for more control over your application.

The Business Logic: in the Manager or in separate classes?
The Business Logic can be put into separate classes as well within the
Manager itself.

Singleton or Multiton and keys
The Manager can implement either the Singleton or Multiton pattern to
offer a specific instance of the Manager. You address a specific instance
using the static methods and keys that identify the specific manager.

CLASS DIAGRAM

Handler A

Handler B

Manager A

+ someOperationD()
+ operationE(parameter)

+ operationF()
+ operationG(parameter)

+ requestA()
+ static requestB(reference)
+ static requestC(reference)

«get concrete
manager by reference
handlerA
 .someOperationD()
handlerB
 .operationF()»

- handlerA
- handlerB

4: «contains a reference to / uses»

5: «contains a reference to /
uses»

Contains business logic, or uses
external objects to handle

business logic

Client A

+ someOperationD()

1: «calls / uses»

Client B

+ someOperationE()

1: «calls / uses»

Client ..

+ someOperationF()

1: «calls / uses»

Link: Manager

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-MGR.html#PAT-MGR

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #20

MEDIATOR

3: «has references to»
Concrete Mediator

+ yourMethodA():
 do something
+ yourMethodB()
 do something else

«colleagues
in subsystem»

Concrete Collegue A

Concrete Collegue B

2: «have references to»

4: «communicate to»

5: «delegates actions to specific»

Client

1: «uses»

Visual summary of the Mediator Pattern

INTENT

Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it lets
you vary their interaction independently.

DEPENDENCIES

Client:
1: Concrete Mediator
Concrete Mediator:
3: Has references to Concrete Colleagues in subsystem
5: Delegates specific actions to Concrete Collegues A, B
Concrete Collegues in subsystem
2: Have references to the Concrete Mediator
4: Communicate to the Concrete Mediator

RESULT

Centralization of communication between objects in your
subsystem

BASICS

WHEN/WHAT?
Centralization of communication between objects
More than wrapping the Classes and objects it “wraps” the
communication that takes place between them, by centralizing and
managing the communication that is needed for these Processes
within the Mediator

Hub or man in the middle
The Mediator acts as a hub or “Man in the Middle” for the
Communication between separate objects and Subsystems

Abstracts and decouples the dependencies between objects in
the subsystem. The Mediator allows objects in a Subsystem to
communicate between each other, without the need for these objects
to have knowledge of the other objects in the Subsystem.

OTHER INFO
Using Inversion of Control and Dependency Injection
The Mediator is another Pattern that applies the principles of Inversion of
Control. Instead of objects deciding who should be created and who will be
communicated to (the wiring), the Mediator takes over creation and the
wiring and successively Injects itself into each player.

Can Inject itself into the subsystem
In one of the possible implementations of the Mediator, the Mediator can
inject itself into the subsystem to be addressed directly by that Subsystem.
The benefits of this injection is simplification of the code and your
processes. De disadvantage is a tight coupling between the subsystem and
the (Interface of) the Mediator that is Injected.

CLASS DIAGRAM

Base Mediator A

Concrete Collegue A

+ operationA()
+ operationB(parameter)

«base class»
Base Collegue

1: «contains a
reference to»

 - mediator

Concrete Collegue B

3: «extends»
Concrete Mediator A

+ someOperationD()
+ operationE(parameter)

+ operationF()
+ operationG(parameter)

+ requestA()
+ requestB()
+ requestC()

«collegueA
 .someOperationD()
collegueB
 .operationF()»

Concrete Mediator B

+ operationD()

- collegueA
- collegueB

2: «extends»

4: «contains a
reference to»

5: «contains a
reference to»

- collegueC
- collegueD

Link: Mediator

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-MED.html#PAT-MED

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #21

MULTITON *

Link: Multiton

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-MULT.html#PAT-MULT

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #22

OBJECT MAP

3: «maps»

ObjectMap

+ static getObject(key, classRef)
+ static removeObject(key, classRef)
+ static addConstructor(constructor,
 classRef)
+ static addObject(key, classRef)

4: «returns
instance of
object to» - static _objectMap

1: «calls, using a key and class reference to
identify the specific object»

Client

2: «uses»

Class A

Class B

Class C

«objects of type»

Visual summary of the Object Map Pattern

INTENT

Use one single point of entry to store objects of any
type in memory and retrieve them using a unique
identifier. Assure that only one instance of an object
exists for each specific data-item.

DEPENDENCIES

Client:
1: Calls ObjectMap using a key and class reference to
identify the specific object
Methods in Object Map:
2: Uses objectMap to perform their actions
Object Map:
3: Maps objects of type Class A, B, C under class
reference and identity key
getObject in Object Map
4: Returns an instance the object to the Client

RESULT

Mapping of one instance of a specific object of any type
to be retrieved and used anywhere

BASICS

WHEN/WHAT?
Centralizing data management
The Object Map centralizes data management within your project.
There is only one object and one class to address for all objects you
might use in your project. When using the Object Map, you are
sure that the object you request is the only one representing that
specific entity with that specific ID.

Storing objects in memory using two keys
The Object Map store objects in memory using two keys: the
Object Key (or ID) and a reference to the Class the object is derived
from.

Retrieving, re-using objects and allowing for data-persistence
The main goal of the Object Map is to make it easier to store
objects in such a way that you can retrieve them easily from
anywhere. This promotes re-use of objects and makes it easier to
create persistent objects with only one instance for data that comes
from the outside.

OTHER INFO
A pattern to de-couple dependencies
The Object Map has a second use, which is the de-coupling of dependencies
from objects and within your structure. Instead of sending specific objects
down a chain of objects, you can use abstract keys or identifiers(for instance
based on Constants or identifiers in XML or JSON data) that refer to the
specific objects you want and need.

Storing lists instead of objects
In some cases, instead of storing objects you might want to store lists of
objects, which you can access and modify anywhere in your application.

Factory Object Map
The Factory Object Mpa is a specific version of the Object Map, taking care
of obejct creation and mapping, instead of leaving this procures up to the
Client, increasing the level of control on the process.

CLASS DIAGRAM

Class A

Class B

Class C

«objects of type»

ObjectMap

- static objectMap
1: «contains»

+ static getObject(key, classRef)
+ static removeObject(key, classRef)
+ static addObject(key, classRef)

«static getObject(key:String , classReference):
 Get object of type and key from map
 When not there yet: return null»

Link: Object Map

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-DTMP.html#PAT-DTMP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #23

OBJECT POOL

3: «contains»

ObjectPool

+ static getObject()
+ static addObject(recyclableObject)

4: «returns
instance of

object or
null value

to»
- static _objectPool

1.a: «tries to get object first from / will
return object to»

Client

2: «uses»

Class A

«objects of type»

1.b: «will create
object from if no
object in pool»

Visual summary of the Object Pool Pattern

RESULT

A container for objects which can be re-used
after they have been discarded, leading to a
reduction of new objects being created

INTENT

Manage the reuse of objects when a type of object is expensive
to create or only a limited number of a kind of object can be
created.

DEPENDENCIES

Client:
1.a: Will try to get object from the Object Pool / will return
object to object Pool when no longer needed
1.b: Will create object from Class A is nothing is in Object
Pool
getObject in Object Pool:
2: Uses object pool in static variable
4: Returns instance of object or null value to Client
Object Pool:
3: Contains objects of type Class A

BASICS

WHEN/WHAT?
When you want to reduce the amount
of new objects created to a minimum
The Object Pool allows you to recycle and re-use objects which
have already been created. This is possible by returning objects no
longer in use into the Object Pool.

Releasing the garbage collector
The Object Pool can be seen as a solution to bypass the garbage
collector. Instead of creating a lot of waste (your discarded objects)
you simply recycle what you already have and only create new
objects when your recycle-bin is empty.

Factory Object Pool: To centralize and manage Object
Creation
Instead of leaving it up to your code, the Factory Object Pool takes
complete care of the provision and management of object creation

OTHER INFO
Implementing recycle interface
Like with the Object Pool it is recommendable for your objects to
implement a recycle-interface and the code to reset the object and drop it
into the Object Pool. This way, when you kill the object, it will put itself
into the Object Pool. When and where you reset the object, so that it
returns to a clean state without any values from previous sessions.

Different ways to handle empty pools
There are three different ways to deal with an empty Pool: return a null
value (the Simple Object Pool), create and return a new object (I will refer
to this as the Factory Object Pool) and blocking the client until an object
becomes available from a different source (the Halting State Object Pool).

The gnarly issue of previous use
When an object is returned to the Object Pool, it has been used by other
objects and possibly event listeners are registered to the object and by the
object. References like this need to be broken to prevent unwanted behavior
to happen. One way to ease this up is by using the Smart Reference Proxy.

CLASS DIAGRAM

ObjectPool A

+ static getObject()
+ static addObject(recyclableObject)

- static _objectPool < Class A >

1.a: «get object from / will return
object to»

Client

Interface: RecyclableObject

+ remove()
+ reset()

Class A

Implements:
+ pubic remove()
+ public reset()

+ someMethodA ()
+ someMethodB ()

1: «contains
objects of type»

2.b: «can use static method to add
itself when rmeoved»

2.a: «implements»

Link: Object Pool

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-OBJP.html#PAT-OBJP

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #24

OBSERVER

Observer ASubject A 1: «register
themselves to»

2: «will notify
registered»

«observers»

Observer B

Observer C

«subjects»

Subject B

Subject C

Visual summary of the Observer Pattern

INTENT

Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

DEPENDENCIES

Observers:
1: Register themselves to one or more Subjects
Subjects:
2: Will notify registered Observers

RESULT

A more flexible way for objects to communicate with each
other

BASICS

WHEN/WHAT?
One object, Multiple Observers
One object can be Observed by many Observers.

Decoupling of Dependencies
The Observer object (or Subject) does not have to have any
relationship with the Observer, or has to know of the existence of
an of the (possible) Observers that will “Observe” the changes or
Events from the Subject

Events and Messages
The Observer Pattern can be used for two main types of
notification: Events and Messages.

OTHER INFO
Messages?
As discussed in the book, Messages can represent anything, including
Events, Requests, Updates and Instructions. Events are only dispatched
when something happened. Events can not be used to send requests or
instructions.

Event and Message Bus:
routing the Events and Messages through a specific bus
Instead of implementing the Obseerver Pattern directly on the object that is
to be observed, an alternative approach can be to use and refer to an Event
Bus. This Bus is an object to which Observers are bound and Events are
dispatched.

CLASS DIAGRAM

«base class»
Subject

+ attach(observer)
+ detach(observer)
+ notify()

Concrete Subject Concrete Observer

+ update()

- observerState
- subject

3.a: «observes»

+ update()

«interface»
Observer

2: «extends»

+ setState()
+ getState()

- subjectState

1: «notifies object
based on»

3.b: «implements»

«for all observers in
list … notify»

- observerList

Link: Observer

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-OBS.html#PAT-OBS

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #25

PARSER
Abstract

Definition /
Object Tree

Object Tree /
Composite Object

Abstract Definition

1: «parsed to»
2: «can be parsed to» 3: «can be parsed to»

Visual summary of the Parser Pattern concept

INTENT

To convert or parse one structure into another structure:
containing similar, or the same, data.

DEPENDENCIES

Abstract Definition / Object Tree:
1: Can be parsed to Abstract Definition / Object Tree
Abstract definition:
2: Can be parsed to Abstract definition / Object Tree
Object Tree / Composite object:
3: Can be parsed to Abstract definition / Object Tree

RESULT

Any structure can be transformed into any other structure

BASICS

WHEN/WHAT?
To parse/convert one structure into another
The Parser can be used to parse or convert one structure into
another. This can be XML to objects or objects to XML or from one
abstract definition into another; for instance: XML to JSON and the
other way around. This can also mean one object structure into
another object structure, representing the same thing in a different
way. Think for instance of datagrams being parsed to visual elements
on screen.

To read and use the contents of a structure
Any structure contains data, and sometimes you need specific
elements from that data to be used or presented somewhere else. The
Parser can traverse the structure and distill those elements and pieces
of information you need.

OTHER INFO
Any direction
The Parser is by default a Pattern that can Parse anything to anything as
long as it is available and possible. So you can Parse one Abstract
Definition to another (XML to JSON, XML to a Custom Structure, XML
to a Custom Structure to an Object Tree, XML to an Object Tree, back to
XML).

Results can be fed back to a Parser
In principle, a Parser result can be Parsed into yet another structure. An
object structure can be parsed into an Abstract Definition and then into
another Abstract Definition and then into an object Tree.

Lossful and lossless parsing
Depending on your need and use, the parsing process can be either lossful
and lossless. Lossful means that from everything in A, only a part will
arrive in B. When you take B, structure A can never be recovered entirely.
Lossless means that there is no loss of information between A and B. A
can be converted to B and B back to A.

CLASS DIAGRAM

Parser A Simple Factory BClient

+ getObject(objectType)+ parse(structure)
2: «uses / get
objects from»

Base Composite Object

- children

+ addChild()

Node Type A

Node Type B

2: «extend»

2.a: «returns objects of type»

2: «uses»

Link: Parser

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-PARS.html#PAT-PARS

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #26

PROTOTYPE *

Link: Prototype

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-PROT.html#PAT-PROT

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #27

PROXY

Real Subject A

Proxy

- realSubject
+ variableA
+ variableB

Client

- proxy

+ doSomething()
+ doSomethingElse()

1: «contains»

+ methodA()
+ methodB()

+ methodA()
+ methodB()

+ variableA
+ variableB

2: «will contain»3: «execute»

5: «will be
delegated to»

4: «can be passed to»

Visual summary of the Proxy Pattern

INTENT

Provide a surrogate or placeholder for another object to
control access to it.

DEPENDENCIES

Client:
1: Contains Proxy
RealSubject in Client:
2: Will contain Real Subhect A
Methods in Client:
3: Execute methods on Proxy
Variables in Proxy:
4: Can be passed to variables in Real Subject A
Methods calls on Proxy:
5: Will be delegated to Real Subject A

RESULT

A separation between the user and the real object via a
“man in the middle”, allowing you to control access to it

BASICS

WHEN/WHAT?
Representing something that might not be there yet
The object we represent with the Proxy is usually not yet there when
we instantiate the Proxy.

Can be used immediately, even if the object is not there
With the Proxy you do not have to wait for the Actual object to
arrive. Whatever you want to do with the object can be done
immediately on the Proxy.

Different types
Remote Proxy: representing an object from somewhere else
Virtual Proxy: creating the object when needed
Protection Proxy: enveloping and protecting the original object
Smart Reference: man in the middle when accessing an object

OTHER INFO
Pretends to be, with additional features
Like the Adapter and the Bridge, the Proxy Pretends to be the object it
represents. But where Bridge and Adapter rely on the actual object to be
there, for the Proxy it does not matter if the object it represents arrives
later or not at all

Buffering the values and method calls
The Proxy – in most cases – will act as a buffer for all the method calls
and value settings on the actual object. While the actual object is not
there, the Proxy will store these settings and queue the calls internally.

Passes all your requests when the object is there
Once the object arrives, the Proxy passes all your requests and executes
your settings on the object (B)

CLASS DIAGRAM

Real Subject A

+ executeA()
+ executeB()

«interface»
Subject A

Proxy A

- realSubject
+ variableA
+ variableB

2.a: «implements»

Client

- proxy

+ doSomething()
+ doSomethingElse()

1: «is of type»

+ executeA()
+ executeB()

+ executeA()
+ executeB()

«if realSubject != null:
 realSubject.executeA()»

3: «instanitates /
passes values to /

 delegates actions to»

«proxy.executeA()
 proxy.executeB()»

+ variableA
+ variableB

Link: Proxy

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-PRX.html#PAT-PRX

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #28

REFLECTION *

Link: Reflection

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-REFL.html#PAT-REFL

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #29

SINGLETON

Singleton

+ static instance()
+ someMethod()
+ anotherMethod()

4: «returns
instance of
object to» - static _instance

3: «contains
instance of»

1: «calls»
Client

2: «uses»

Visual summary of the Singleton Pattern

INTENT

Provide a surrogate or placeholder for another
object to control access to it.

DEPENDENCIES

Client:
1: Calls static method instance()
Static Methods instance():
2: Uses the instance stored in the static variable
_instance or created new instance when not there.
Static method :
3: Execute methods on Proxy
Variables in Proxy:
4: Can be passed to variables in Real Subject A
Methods calls on Proxy:
5: Will be delegated to Real Subject A

RESULT

One single instance of an object that can be retrieved
and used anywhere

BASICS

WHEN/WHAT?
Provide one single instance of an object
The Singleton is used to provide one single instance of an object
throughout your project.

Replacement for global variables
One use for the Singleton is as a replacement for global variables. The
basic idea is that you want to have one single central place to store
specific values and references to other objects in such a way that you
can reach this from all over your application.

For parts of the system that require only one instance
Some parts of your system require one and only one instance of an
object as this instance should be the only one dealing with that
subject and information. In games this can be your game-score and
player health. In an OS this can be the file system or a printer spooler.

OTHER INFO
The Multiton, Identity Map and Object Map:
taking it one step further
The Multiton, Identity Map and Object Map do roughly the same as the
Singleton: providing only one instance, but then per entity. For instance:
in a multiplayer game, you have “player 1” and “player 2” and each need
their own object and representative.

Unit testing
The Singleton is kind of “suspect” in unit testing as “you do not control
the instantiation”. Nothing prevents you, however, from injecting a
controlled version of the singleton instance into the singleton class.

CLASS DIAGRAM

Singleton

+ static instance()
+ someMethod()

- static _instance

1: «contains
reference to»

Link: Singleton

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-SING.html#PAT-SING

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #30

STATE

Context

+ request()

+ setState(stateOject)

Concrete State A

+ handleRequest()

- stateObject

Concrete State B

+ handleRequest()

«state object»

1: «contains»

2: «is handled by current»

5: «sets next state object via»

3: «has reference to /
can inject another
state object into»

4: «has knowledge
of other»

Concrete State C

+ handleRequest()

Visual summary of the State Pattern

INTENT

Allow an object to alter its behavior when its
internal state changes. The object will appear to
change its class.

DEPENDENCIES

State Object in Context:
1: Contains Sate Object
Request in Context:
2: Is handled by State Object
State Object :
3: Has reference to / can inject another object into
Context
4: Has knowledge of other State Objects
5: Sets next State Object via setState mehtod

RESULT

A self-organizing delegator that defines internally
which concrete implementation should handle the
next state of the process

BASICS

WHAT/WHEN?
When you need a self-organizing delegator to handle processes
Due to its setup, the State can be seen as a self-organizing Delegator.
The Context delegates actions to the State object. The State object
then defines which next State object will deal with the process state
that follows.

The State object changes the content of the State container
The State Pattern is a closed universe. Your code, using the State
Pattern, has no knowledge on what State should or could be next.
This is all dealt with by the State objects themselves.

OTHER INFO
Each state object knows what next state will follow
Each state object knows what next state will follow on a specific method
call.

Actions in the Context are delegated to the State object
Most if not all actions in the Context are delegated to the State object.

State objects have knowledge of other State objects
State objects have knowledge of other State objects and which State
object to choose when the State changes due to a method call.

CLASS DIAGRAM

Context

+ request()
+ setState(stateOject)

Concrete State A

+ handle()

- stateObjectB

+ setContext(context)
+ handle()

«base class»
State

1: «contains
object of type»

«stateObject.handle()»

- stateObject

Concrete State B

+ handle()

- stateObjectA

2.a: «extends»

- contextObject

«contextObject.setState(stateObjectB)»

2.b: «has reference to /
sets next state object in»

Link: State

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-STT.html#PAT-STT

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #31

STRATEGY
Your Class

+ yourMethodA():
 if A:
 do Approach A
 if B:
 do Approach B
+ yourMethodB()

variables

procedures Concrete Strategy A.a

+ yourMethodA:
 do Approach A

Concrete Strategy A.b

+ yourMethodA:
 do Approach B

1: «extract and
split conditional
code into separate
classes»

2: «injected into /
replacement for: code
inside yourMethodA»

Visual summary of the Strategy Pattern

INTENT

Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use
it.

DEPENDENCIES

Actions in Your Class:
1: Extracted and split into separate classes
Strategies:
2: Injected into / replacement for code inside your
method

RESULT

Classes and Objects that can change part of their
behavior

BASICS

WHAT/WHEN?
When only a part of the process changes in a specific Context
The Strategy Pattern is used when only a part of the process in your
Class changes in a specific Context.

When you want to extract Context specific code into a separate
Class
To cater a more dynamic implementation of specific routines, only the
context-specific code is externalized (extracted) into a Strategy Class.
Depending on the Context of the situation, a different Strategy can be
injected into the Context object by your code, leading to a different
execution of specific actions.

A handy alternative for conditional execution in your code
Instead of cluttering your methods with conditions, you can simply
extract that conditional code into separate Classes, select the one you
need and delegate the concrete execution to it.

OTHER INFO
Delegating actions
Like the Bridge and the Delegate Pattern, the Strategy Pattern delegates
actions to another object. In the case of Strategy, this is the Strategy
Object or concrete implementation of the Strategy per Context.

CLASS DIAGRAM

Context

+/- executeA()
+ setStrategyA(strategy)
+ doSomethingElse()

Concrete Strategy A.a

+ executeA()

+ executeA()

«interface»
Strategy A

2.a: «contains
object of type»

«strategyA.executeA()»

- strategyA

Concrete Strategy A.b

+ executeA()

2.a: «implements»

Client

- context

- setStrategy(
 contextID)

1: «uses / can set
strategy»

2.b: «uses»

Link: Strategy

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-STRA.html#PAT-STRA

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #32

TEMPLATE METHOD *

Link: Template Method

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-TPL.html#PAT-TPL

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

DESIGN PATTERNS #33

VISITOR

Concrete Element A

Concrete Element B

Concrete Visitor A

Object Structure A

Concrete Visitor B

Client A

«visitors»

1: «selects a concrete visitor based on» 2: «has / sends selected visitor into»

«elements»

3: «consists of elements based on»

4: «visits / is sent through /
can perform operations on»

5: «can be child of»

Visual summary of the Strategy Pattern

INTENT

Represent an operation to be performed on the elements of
an object structure. Visitor lets you define a new operation
without changing the classes of the elements on which it
operates.

DEPENDENCIES

Client A:
1: Selects a concrete visitor A, B
2: Has / sends selected visitor into Object Structure A
Object Structure A:
3: Consists of (composite) elements bases on Concrete
Element A, B
Visitors:
4: Visits / is sent through / can perform operation on
elements in Object Structure A
Elements in Object Structure A:
5: Can be child of other elements

RESULT

A dynamic solution to run through- and perform actions on
an Object Structure from the inside using different type of
“visitors”

BASICS

WHAT/WHEN?
When you need to traverse through a composite object
The Visitor can be used to travers through a Composite object and
either do something with the object,s or simply read the contents.

As an alternative for the Parser
You could use the Visitor pattern as an alternative for the Parser as
both can accomplish the same results. The Visitor requires a bit more
within the objects you traverse.

Many different Visitors, one traversing process
The benefit of the Visitor is that you can use many different Visitors
in the same traversing process, each delivering a completely different
result in that process.

OTHER INFO
Can require specific setup of the objects in the tree
In the basic implementation of the Visitor Pattern, the objects pass the
Visitor. This includes an “accept” method on each object: accepting the
visitor.

Visitor can pass itself to the next object
There are workarounds possible in which the Visitor can pass itself to
each next object and deal with the content there. One workaround is to
use an Object Adapter for the objects which are not implementing the
Visitor Pattern.

Inverted approach related to the Parser
Like the Command and Observer patterns, the Visitor and Parser are two
different approaches to the same problem: how do I work with data and
objects in a structure? The Visitor inverts the process by traversing from
the inside

CLASS DIAGRAM

«interface / base class»
Base Visitor A

Concrete Element A

+ acceptVisitor(visitor)

+ acceptVisitor(visitor)

«base class»
Base Element A

Concrete Element B

3.a: «extends»Concrete Visitor A

3: «consists of elements based on»

+ acceptVisitor(visitor)

Object Structure A

- childElementList

Overrides / Implements:
+ handleElementA(elementA)
+ handleElementB(elementB)

Concrete Visitor B

«visitor.handleElementA(
this)»

«visitor.handleElementB(
this)»

+ handleElementA(elementA)
+ handleElementB(elementB)

2: «extends / implements»

Client A

1.a: «selects a concrete
visitor based on»

1.a: «sends selected
visitor into»

Overrides / Implements:
+ handleElementA(elementA)
+ handleElementB(elementB)

3.b: «contains
elements
based on»

Link: Visitor

http://patterns.instantinterfaces.nl/current/Refactoring-and-Design-Patterns-PAT-VIS.html#PAT-VIS

All text and images © Peter Kaptein. Version: June 2012. No permission needed to copy, distribute, print and use this PDF

