
 

 

Design Patterns
By Jason McDonald

CONTENTS INCLUDE:
n	 Chain of Responsibility
n	 Command
n	 Interpreter
n	 Iterator
n	 Mediator
n	 Observer
n	 Template Method and more...

DZone, Inc.  |   www.dzone.com

This Design Patterns refcard provides a quick reference to 
the original 23 Gang of Four design patterns, as listed in the 
book Design Patterns: Elements of Reusable Object-Oriented 
Software. Each pattern includes class diagrams, explanation, 
usage information, and a real world example.

Object Scope: Deals with object relationships that can be 
changed at runtime.

Class Scope: Deals with class relationships that can be changed 
at compile time.

C  Abstract Factory

S  Adapter

S  Bridge

C  Builder

B  Chain of 
 Responsibility

B  Command

S  Composite

S  Decorator
S  Facade
C  Factory Method
S  Flyweight
B  Interpreter
B  Iterator
B  Mediator
B  Memento

C  Prototype
S  Proxy
B  Observer
C  Singleton
B  State
B  Strategy
B  Template Method
B  Visitor

ABOUT DESIGN PATTERNS

n  Authoritative content
n  Designed for developers
n  Written by top experts
n  Latest tools & technologies
n Hot tips & examples
n  Bonus content online
n  New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 

 

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL 

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick, 

onload, etc. in browser event model)

setRequestHeader 

(namevalue)

add a header to the HTTP request 

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send() 

is called)

httpStatus The HTTP return code (integer, only populated after 

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after 

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only 

set after response reaches the interactive readyState)

getResponseHeader 

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot 
Tip

 tech facts at your fingertips

D
e

si
g

n
 P

at
te

rn
s 

  
  

  
  

  
  

  
  

  
  

  
w

w
w

.d
zo

n
e.

co
m

  
  

  
  

  
  

  
  

  
  

  
  

  
 G

e
t 

M
o

re
 R

e
fc

ar
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

 

Creational Patterns: Used to construct objects such that 
they can be decoupled from their implementing system.

Structural Patterns: Used to form large object structures 
between many disparate objects.

Behavioral Patterns: Used to manage algorithms, 
relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY               Object Behavioral

Purpose
Gives more than one object an opportunity to handle a request 
by linking receiving objects together. 

Use When
n	 Multiple objects may handle a request and the handler  
 doesn’t have to be a specific object.
n	 A set of objects should be able to handle a request with the  
 handler determined at runtime.
n	 A request not being handled is an acceptable potential  
 outcome.

Example
Exception handling in some languages implements this pattern. 
When an exception is thrown in a method the runtime checks to 
see if the method has a mechanism to handle the exception or 
if it should be passed up the call stack. When passed up the call 
stack the process repeats until code to handle the exception is 
encountered or until there are no more parent objects to hand 
the request to.

COMMAND                           Object Behavioral

Purpose
Encapsulates a request allowing it to be treated as an object. 
This allows the request to be handled in traditionally object 
based relationships such as queuing and callbacks.

Use When
n	 You need callback functionality.
n	 Requests need to be handled at variant times or in variant orders.
n	 A history of requests is needed.
n	 The invoker should be decoupled from the object handling the  
 invocation.

Example
Job queues are widely used to facilitate the asynchronous 
processing of algorithms. By utilizing the command pattern the 
functionality to be executed can be given to a job queue for 
processing without any need for the queue to have knowledge 
of the actual implementation it is invoking. The command object 
that is enqueued implements its particular algorithm within the 
confines of the interface the queue is expecting.

Receiver

Invoker

Command
+execute( )

Client

ConcreteCommand
+execute( )

successor

Client
<<interface>>

Handler

+handlerequest( )

ConcreteHandler 1

+handlerequest( )

ConcreteHandler 2

+handlerequest( )

#8



Design Patterns
2

DZone, Inc.  |   www.dzone.com

 tech facts at your fingertips

INTERPRETER       Class Behavioral

ITERATOR       Object Behavioral

Purpose
Defines a representation for a grammar as well as a mechanism 
to understand and act upon the grammar. 

Use When
n	 There is grammar to interpret that can be represented as  
 large syntax trees.
n	 The grammar is simple.
n	 Efficiency is not important.
n	 Decoupling grammar from underlying expressions is desired.

Example
Text based adventures, wildly popular in the 1980’s, provide 
a good example of this. Many had simple commands, such 
as “step down” that allowed traversal of the game. These 
commands could be nested such that it altered their meaning. 
For example, “go in” would result in a different outcome than 
“go up”. By creating a hierarchy of commands based upon 
the command and the qualifier (non-terminal and terminal 
expressions) the application could easily map many command 
variations to a relating tree of actions.

Purpose
Allows for access to the elements of an aggregate object  
without allowing access to its underlying representation. 

Use When
n	 Access to elements is needed without access to the entire  
 representation.
n	 Multiple or concurrent traversals of the elements are needed.
n	 A uniform interface for traversal is needed.
n	 Subtle differences exist between the implementation details  
 of various iterators.

Example
The Java implementation of the iterator pattern allows users to 
traverse various types of data sets without worrying about the 
underlying implementation of the collection. Since clients simply 
interact with the iterator interface, collections are left to define 
the appropriate iterator for themselves. Some will allow full ac-
cess to the underlying data set while others may restrict certain 
functionalities, such as removing items.

MEDIATOR       Object Behavioral

MEMENTO       Object Behavioral

Purpose
Allows loose coupling by encapsulating the way disparate sets of 
objects interact and communicate with each other. Allows for the 
actions of each object set to vary independently of one another. 

Use When
n	 Communication between sets of objects is well defined 
 and complex.
n	 Too many relationships exist and common point of control 
 or communication is needed.

Example
Mailing list software keeps track of who is signed up to the 
mailing list and provides a single point of access through which 
any one person can communicate with the entire list. Without 
a mediator implementation a person wanting to send a mes-
sage to the group would have to constantly keep track of who 
was signed up and who was not. By implementing the mediator 
pattern the system is able to receive messages from any point 
then determine which recipients to forward the message on to, 
without the sender of the message having to be concerned with 
the actual recipient list. 

Purpose
Allows for capturing and externalizing an object’s internal 
state so that it can be restored later, all without violating 
encapsulation. 

Use When
n	 The internal state of an object must be saved and restored 
 at a later time.
n	 Internal state cannot be exposed by interfaces without exposing  
 implementation.
n	 Encapsulation boundaries must be preserved.

Example
Undo functionality can nicely be implemented using the  
memento pattern. By serializing and deserializing the state of 
an object before the change occurs we can preserve a snapshot 
of it that can later be restored should the user choose to undo 
the operation.

Client

Context
<<interface>>

AbstractExpression

+interpret( )

TerminalExpression

+interpret( ) : Context

NonterminalExpression

+interpret( ) : Context

◆

Client

<<interface>>
Aggregate

+createIterator( )

<<interface>>
Iterator

+next( )

Concrete Aggregate

+createIterator( ) : Context

ConcreteIterator

+next ( ) : Context

Mediator <<interface>>
Colleague

ConcreteMediator ConcreteColleague

informs

updates

Caretaker
Memento

-state

Originator
-state

+setMemento(in m : Memento)
+createMemento( )



 
   

3

DZone, Inc.  |   www.dzone.com

Design Patterns
 tech facts at your fingertips

OBSERVER       Object Behavioral

STATE       Object Behavioral

Purpose
Lets one or more objects be notified of state changes in other 
objects within the system.

Use When
n	 State changes in one or more objects should trigger behavior  
 in other objects
n	 Broadcasting capabilities are required.
n	 An understanding exists that objects will be blind to the  
 expense of notification.

Example
This pattern can be found in almost every GUI environment. 
When buttons, text, and other fields are placed in applications 
the application typically registers as a listener for those controls. 
When a user triggers an event, such as clicking a button, the 
control iterates through its registered observers and sends a 
notification to each.

Purpose
Ties object circumstances to its behavior, allowing the object 
to behave in different ways based upon its internal state. 

Use When
n	 The behavior of an object should be influenced by its state.
n	 Complex conditions tie object behavior to its state.
n	 Transitions between states need to be explicit.

Example
An email object can have various states, all of which will  
change how the object handles different functions. If the state  
is “not sent” then the call to send() is going to send the message 
while a call to recallMessage() will either throw an error or do 
nothing. However, if the state is “sent” then the call to send() 
would either throw an error or do nothing while the call to 
recallMessage() would attempt to send a recall notification 
to recipients. To avoid conditional statements in most or all 
methods there would be multiple state objects that handle the 
implementation with respect to their particular state. The calls 
within the Email object would then be delegated down to the 
appropriate state object for handling.

STRATEGY       Object Behavioral

TEMPLATE METHOD       Class Behavioral

Purpose
Defines a set of encapsulated algorithms that can be swapped 
to carry out a specific behavior. 

Use When
n	 The only difference between many related classes is their  
 behavior.
n	 Multiple versions or variations of an algorithm are required.
n	 Algorithms access or utilize data that calling code shouldn’t  
 be exposed to.
n	 The behavior of a class should be defined at runtime.
n	 Conditional statements are complex and hard to maintain.

Example
When importing data into a new system different validation 
algorithms may be run based on the data set. By configuring the 
import to utilize strategies the conditional logic to determine 
what validation set to run can be removed and the import can be 
decoupled from the actual validation code. This will allow us to 
dynamically call one or more strategies during the import.

Purpose
Identifies the framework of an algorithm, allowing implementing 
classes to define the actual behavior. 

Use When
n	 A single abstract implementation of an algorithm is needed.
n	 Common behavior among subclasses should be localized to a  
 common class.
n	 Parent classes should be able to uniformly invoke behavior in  
 their subclasses.
n	 Most or all subclasses need to implement the behavior.  

Example
A parent class, InstantMessage, will likely have all the methods 
required to handle sending a message. However, the actual 
serialization of the data to send may vary depending on the 
implementation. A video message and a plain text message 
will require different algorithms in order to serialize the data 
correctly. Subclasses of InstantMessage can provide their 
own implementation of the serialization method, allowing the 
parent class to work with them without understanding their 
implementation details.

notifies

observes

<<interface>>
Observer

+update( )

ConcreteSubject
-subjectState

ConcreteObserver
-observerState
+update( )

<<interface>>
Subject

+attach(in o : Observer)
+detach(in o : Observer)
+notify( )

<<interface>>
State

+handle( )

Context

+request ( )

◆

ConcreteState 1

+handle( )

ConcreteState 2

+handle( )

Context ◆

ConcreteStrategyA

+execute( )

ConcreteStrategyB

+execute( )

<<interface>>
Strategy

+execute( )

ConcreteClass

+subMethod( )

AbstractClass

+templateMethod( )
#subMethod( )



 
      

4

DZone, Inc.  |   www.dzone.com

Design Patterns
 tech facts at your fingertips

ADAPTER       Class and Object Structural

VISITOR       Object Behavioral BRIDGE       Object Structural

COMPOSITE       Object Structural

Purpose
Allows for one or more operations to be applied to a set of objects 
at runtime, decoupling the operations from the object structure.

Use When
n	 An object structure must have many unrelated operations  
 performed upon it.
n	 The object structure can’t change but operations performed  
 on it can.
n	 Operations must be performed on the concrete classes of an  
 object structure.
n	 Exposing internal state or operations of the object structure  
 is acceptable. 
n	 Operations should be able to operate on multiple object  
 structures that implement the same interface sets. 

Example
Calculating taxes in different regions on sets of invoices would 
require many different variations of calculation logic. Implementing 
a visitor allows the logic to be decoupled from the invoices and 
line items. This allows the hierarchy of items to be visited by cal-
culation code that can then apply the proper rates for the region. 
Changing regions is as simple as substituting a different visitor.  

Purpose
Permits classes with disparate interfaces to work together by 
creating a common object by which they may communicate 
and interact. 

Use When
n	 A class to be used doesn’t meet interface requirements.
n	 Complex conditions tie object behavior to its state.
n	 Transitions between states need to be explicit.

Example
A billing application needs to interface with an HR application in 
order to exchange employee data, however each has its own inter-
face and implementation for the Employee object. In addition, the 
SSN is stored in different formats by each system. By creating an 
adapter we can create a common interface between the two appli-
cations that allows them to communicate using their native objects 
and is able to transform the SSN format in the process.

Purpose
Defines an abstract object structure independently of the 
implementation object structure in order to limit coupling. 

Use When
n	 Abstractions and implementations should not be bound at  
 compile time.
n	 Abstractions and implementations should be independently  
 extensible.
n	 Changes in the implementation of an abstraction should  
 have no impact on clients.
n	 Implementation details should be hidden from the client.

Example
The Java Virtual Machine (JVM) has its own native set of functions 
that abstract the use of windowing, system logging, and byte 
code execution but the actual implementation of these functions 
is delegated to the operating system the JVM is running on. 
When an application instructs the JVM to render a window it  
delegates the rendering call to the concrete implementation 
of the JVM that knows how to communicate with the operating 
system in order to render the window.

Purpose
Facilitates the creation of object hierarchies where each object 
can be treated independently or as a set of nested objects 
through the same interface. 

Use When
n	 Hierarchical representations of objects are needed..
n	 Objects and compositions of objects should be treated uniformly.

Example
Sometimes the information displayed in a shopping cart is the 
product of a single item while other times it is an aggregation 
of multiple items. By implementing items as composites we can 
treat the aggregates and the items in the same way, allowing us 
to simply iterate over the tree and invoke functionality on each 
item. By calling the getCost() method on any given node we 
would get the cost of that item plus the cost of all child items, 
allowing items to be uniformly treated whether they were single 
items or groups of items.

<<interface>>
Element

+accept(in v : Visitor)

ConcreteElementA
+accept(in v : Visitor)

ConcreteElementB
+accept(in v : Visitor)

<<interface>>
Visitor

+visitElementA(in a : ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

Client

ConcreteVisitor

+visitElementA(in a : ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

<<interface>>
Adapter

+operation( )
Client

ConcreteAdapter
-adaptee
+operation( )

Adaptee

+adaptedOperation( )

Leaf

+operation( )

<<interface>>
Component

children
+operation( )
+add(in c : Component )
+remove(in c : Component )
+getChild(in i : int)

Component

+operation( )
+add(in c : Component )
+remove(in c : Component )
+getChild(in i : int)

Abstraction

+operation( )

◆

ConcreteImplementorA

+operationImp( )

ConcreteImplementorB

+operationImp( )

<<interface>>
Implementor

+operationImp( )



      

5

DZone, Inc.  |   www.dzone.com

Design Patterns
 tech facts at your fingertips

Purpose
Allows for the dynamic wrapping of objects in order to modify 
their existing responsibilities and behaviors.

Use When
n	 Object responsibilities and behaviors should be dynamically  
 modifiable.
n	 Concrete implementations should be decoupled from 
 responsibilities and behaviors.
n	 Subclassing to achieve modification is impractical or impossible.
n	 Specific functionality should not reside high in the object hierarchy.
n	 A lot of little objects surrounding a concrete implementation is  
 acceptable.

Example
Many businesses set up their mail systems to take advantage of 
decorators. When messages are sent from someone in the company 
to an external address the mail server decorates the original 
message with copyright and confidentiality information. As long 
as the message remains internal the information is not attached. 
This decoration allows the message itself to remain unchanged 
until a runtime decision is made to wrap the message with  
additional information. 

Purpose
Supplies a single interface to a set of interfaces within a system. 

Use When
n	 A simple interface is needed to provide access to a complex 
 system.
n	 There are many dependencies between system implementations  
 and clients.
n	 Systems and subsystems should be layered.

Example
By exposing a set of functionalities through a web service  
the client code needs to only worry about the simple interface 
being exposed to them and not the complex relationships that 
may or may not exist behind the web service layer. A single  
web service call to update a system with new data may actually  
involve communication with a number of databases and systems, 
however this detail is hidden due to the implementation of the 
façade pattern.

Purpose
Facilitates the reuse of many fine grained objects, making the 
utilization of large numbers of objects more efficient.  

Use When
n	 Many like objects are used and storage cost is high.
n	 The majority of each object’s state can be made extrinsic.  
n	 A few shared objects can replace many unshared ones.
n	 The identity of each object does not matter.

Example
Systems that allow users to define their own application flows 
and layouts often have a need to keep track of large numbers of 
fields, pages, and other items that are almost identical to each 
other. By making these items into flyweights all instances of each 
object can share the intrinsic state while keeping the extrinsic 
state separate. The intrinsic state would store the shared properties, 
such as how a textbox looks, how much data it can hold, and 
what events it exposes. The extrinsic state would store the  
unshared properties, such as where the item belongs, how to 
react to a user click, and how to handle events.

Purpose
Allows for object level access control by acting as a pass through 
entity or a placeholder object. 

Use When
n	 The object being represented is external to the system.
n	 Objects need to be created on demand.
n	 Access control for the original object is required.
n	 Added functionality is required when an object is accessed. 

Example
Ledger applications often provide a way for users to reconcile 
their bank statements with their ledger data on demand, automat-
ing much of the process. The actual operation of communicating 
with a third party is a relatively expensive operation that should be 
limited. By using a proxy to represent the communications object 
we can limit the number of times or the intervals the communica-
tion is invoked. In addition, we can wrap the complex instantiation 
of the communication object inside the proxy class, decoupling 
calling code from the implementation details. 

DECORATOR       Object Structural FLYWEIGHT       Object Structural

PROXY       Object Structural

FACADE       Object Structural

Complex System

Client

FlyweightFactory

+getFlyweight(in key) ◆

ConcreteFlyweight
-intrinsicState

+operation( in extrinsicState)
UnsharedConcreteFlyweight
-allState

+operation( in extrinsicState)

<<interface>>
Flyweight

+operation( in extrinsicState)

Client

<<interface>>
Subject

+request( )

representsRealSubject

+request( )

Proxy

+request( )

ConcreteComponent

+operation( )

ConcreteDecorator
-addedState

+operation( )
+addedBehavior ( )

Decorator

+operation( )

<<interface>>
Component

+operation( )

Facade



      

6

DZone, Inc.  |   www.dzone.com

Design Patterns
 tech facts at your fingertips

Purpose
Provide an interface that delegates creation calls to one or 
more concrete classes in order to deliver specific objects.

Use When
n	 The creation of objects should be independent of the system  
 utilizing them.
n	 Systems should be capable of using multiple families of objects.
n	 Families of objects must be used together.
n	 Libraries must be published without exposing implementation  
 details.
n	 Concrete classes should be decoupled from clients.

Example
Email editors will allow for editing in multiple formats including 
plain text, rich text, and HTML. Depending on the format being 
used, different objects will need to be created. If the message 
is plain text then there could be a body object that represented 
just plain text and an attachment object that simply encrypted 
the attachment into Base64. If the message is HTML then the 
body object would represent HTML encoded text and the  
attachment object would allow for inline representation and a 
standard attachment. By utilizing an abstract factory for creation 
we can then ensure that the appropriate object sets are created 
based upon the style of email that is being sent.

ABSTRACT FACTORY       Object Creational

<<interface>>
AbstractFactory

+createProductA( )
+createProductB( )

<<interface>>
AbstractProduct

Client

ConcreteFactory

+createProductA( )
+createProductB( )

ConcreteProduct

Purpose
Allows for the dynamic creation of objects based upon easily 
interchangeable algorithms. 

Use When
n	 Object creation algorithms should be decoupled from the system.
n	 Multiple representations of creation algorithms are required.
n	 The addition of new creation functionality without changing  
 the core code is necessary.
n	 Runtime control over the creation process is required.

Example
A file transfer application could possibly use many different 
protocols to send files and the actual transfer object that will be 
created will be directly dependent on the chosen protocol. Using 
a builder we can determine the right builder to use to instantiate 
the right object. If the setting is FTP then the FTP builder would 
be used when creating the object. 

BUILDER       Object Creational

Director

+construct( )

◆

<<interface>>
Builder

+buildPart( )

ConcreteBuilder

+buildPart( )
+getResult( )

Purpose
Exposes a method for creating objects, allowing subclasses to 
control the actual creation process. 

Use When
n	 A class will not know what classes it will be required to create.
n	 Subclasses may specify what objects should be created.  
n	 Parent classes wish to defer creation to their subclasses.

Example
Many applications have some form of user and group structure  
for security. When the application needs to create a user it will 
typically delegate the creation of the user to multiple user 
implementations. The parent user object will handle most  
operations for each user but the subclasses will define the factory 
method that handles the distinctions in the creation of each type 
of user. A system may have AdminUser and StandardUser objects 
each of which extend the User object. The AdminUser object  
may perform some extra tasks to ensure access while the  
StandardUser may do the same to limit access.

FACTORY METHOD      Object Creational

<<interface>>
Product

ConcreteProduct

Creator

+factoryMethod( )
+anOperation( )

ConcreteCreator

+factoryMethod( )

Purpose
Create objects based upon a template of an existing objects 
through cloning. 

Use When
n	 Composition, creation, and representation of objects should  
 be decoupled from a system.
n	 Classes to be created are specified at runtime.
n	 A limited number of state combinations exist in an object.
n	 Objects or object structures are required that are identical or  
 closely resemble other existing objects or object structures. 
n	 The initial creation of each object is an expensive operation.
Example
Rates processing engines often require the lookup of many 
different configuration values, making the initialization of the 
engine a relatively expensive process. When multiple instances 
of the engine is needed, say for importing data in a multi-threaded 
manner, the expense of initializing many engines is high. By 
utilizing the prototype pattern we can ensure that only a single 
copy of the engine has to be initialized then simply clone the 
engine to create a duplicate of the already initialized object.  
The added benefit of this is that the clones can be streamlined 
to only include relevant data for their situation.

<<interface>>
Prototype

+clone( )

Client

ConcretePrototype 1

+clone( )

ConcretePrototype 2

+clone( )

PROTOTYPE       Object Creational



      

   

   

ABOUT THE AUTHOR

Design Patterns
7

Capturing a wealth of experience 
about the design of object-oriented 
software, four top-notch designers 
present a catalog of simple and  
succinct solutions to commonly  
occurring design problems. Previously 
undocumented, these 23 patterns 
allow designers to create more 
flexible, elegant, and ultimately 

reusable designs without having to rediscover the design 
solutions themselves. 

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/designpatterns

Jason McDonald 
The product of two computer programmers, Jason McDonald wrote his 
first application in BASIC while still in elementary school and has been 
heavily involved in software ever since. He began his software career 
when he found himself automating large portions of one of his first jobs. 
Finding his true calling, he quit the position and began working as a 
software engineer for various small companies where he was responsi-

ble for all aspects of applications, from initial design to support. He has roughly 11 years 
of experience in the software industry and many additional years of personal software 
experience during which he has done everything from coding to architecture to leading 
and managing teams of engineers. Through his various positions he has been exposed 
to design patterns and other architectural concepts for years. Jason is the founder of 
the Charleston SC Java Users Group and is currently working to help found a Charleston 
chapter of the International Association of Software Architects.

Personal Blog: http://www.mcdonaldland.info/
Projects: Charleston SC Java Users Group

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com 

Sponsorship Opportunities 
sales@dzone.com 

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, 
photocopying, or otherwise, without prior written permission of the publisher. Reference: Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph 
Johnson, John M. Glissades. Addison-Wesley Professional, November 10, 1994.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-10-3
ISBN-10: 1-934238-10-4

9 781934 238103

5 0 7 9 5

Purpose
Ensures that only one instance of a class is allowed within a system. 

Use When
n	 Exactly one instance of a class is required.
n	 Controlled access to a single object is necessary. 

Example
Most languages provide some sort of system or environment 
object that allows the language to interact with the native operat-
ing system. Since the application is physically running on only one 
operating system there is only ever a need for a single instance of 
this system object. The singleton pattern would be implemented 
by the language runtime to ensure that only a single copy of the 
system object is created and to ensure only appropriate processes 
are allowed access to it. 

SINGLETON       Object Creational

Singleton

-static uniqueInstance
-singletonData

+static instance( )
+singletonOperation( )

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock 
Getting Started with MyEclipse 

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server 

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to 

more than 1.7 million software developers, architects and decision 

makers. DZone offers something for everyone, including news, 

tutorials, cheatsheets, blogs, feature articles, source code and more.  

“DZone is a developer’s dream,” says PC Magazine.


